Fig. 6
- ID
- ZDB-FIG-140716-29
- Publication
- Duval et al., 2014 - gdf6a is required for cone photoreceptor subtype differentiation and for the actions of tbx2b in determining rod versus cone photoreceptor fate
- Other Figures
- All Figure Page
- Back to All Figure Page
gdf6a modulates tbx2b regulation of UV cone and rod development. A, B. When [gdf6a+/s327;tbx2b+/lor] compound heterozygous mutants are in-crossed (inx), a disproportionate fraction of microphthalmic offspring exhibit the lots-of-rods phenotype compared to normophthalmic siblings, tbx2b+/lor in-crosses, and to predicted Mendelian ratios of the recessive lots-of-rods phenotype (X2 ***p<0.001; 3 replicates of n = 17, 19, 35 microphthalmics; 6dpf). UV cones and rods were labeled using antibodies 10C9.1 and 4C12 displayed in magenta and green, respectively. A portion of microphthalmic larvae with the lots-of-rods phenotype has a tbx2b+/lor genotype (see Table 1). C, D. When [gdf6a+/s327;tbx2b+/fby] compound heterozygous mutants are in- crossed, the lots-of-rods phenotype is again observed at higher rates in microphthlamic eyes compared to normophthalmic eyes (X2 *p = 0.007; 1 replicate, n = 39 microphthalmics, 6 dpf). Panel D shows rod opsin in situ hybridization (red). Scale bars are all 50 μm. E. Genotyping for the lor mutation was performed via linkage analysis using an A/T synonymous SNP located before the DNA binding domain of tbx2b in lor and non-lor alleles, respectively. gdf6as327/s327 mutants with a corresponding SNP of T were used in crossing of the mutant lines. |