PUBLICATION

Unraveling the evolutionary origin of the complex Nuclear Receptor Element (cNRE), a cis-regulatory module required for preferential expression in the atrial chamber

Authors
Nunes Santos, L., Sousa Costa, Â.M., Nikolov, M., Carvalho, J.E., Coelho Sampaio, A., Stockdale, F.E., Wang, G.F., Andrade Castillo, H., Bortoletto Grizante, M., Dudczig, S., Vasconcelos, M., Rosenthal, N., Jusuf, P.R., Nim, H.T., de Oliveira, P., Guimarães de Freitas Matos, T., Nikovits, W., Tambones, I.L., Figueira, A.C.M., Schubert, M., Ramialison, M., Xavier-Neto, J.
ID
ZDB-PUB-240405-7
Date
2024
Source
Communications biology   7: 371371 (Journal)
Registered Authors
Dudczig, Stefanie, Jusuf, Patricia, Ramialison, Mirana, Schubert, Michael
Keywords
none
MeSH Terms
  • Animals
  • Heart Atria*/metabolism
  • Heart Ventricles
  • Mice
  • Myosins/metabolism
  • Receptors, Cytoplasmic and Nuclear/metabolism
  • Zebrafish*/genetics
PubMed
38575811 Full text @ Commun Biol
Abstract
Cardiac function requires appropriate proteins in each chamber. Atria requires slow myosin to act as reservoirs, while ventricles demand fast myosin for swift pumping. Myosins are thus under chamber-biased cis-regulation, with myosin gene expression imbalances leading to congenital heart dysfunction. To identify regulatory inputs leading to cardiac chamber-biased expression, we computationally and molecularly dissected the quail Slow Myosin Heavy Chain III (SMyHC III) promoter that drives preferential expression to the atria. We show that SMyHC III gene states are orchestrated by a complex Nuclear Receptor Element (cNRE) of 32 base pairs. Using transgenesis in zebrafish and mice, we demonstrate that preferential atrial expression is achieved by a combinatorial regulatory input composed of atrial activation motifs and ventricular repression motifs. Using comparative genomics, we show that the cNRE might have emerged from an endogenous viral element through infection of an ancestral host germline, revealing an evolutionary pathway to cardiac chamber-specific expression.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping