IMAGE

Fig. 4.

ID
ZDB-IMAGE-220521-5
Antibodies
Source
Figures for Espinosa et al., 2022
Image
Figure Caption

Fig. 4.

spega/b deficiency in zebrafish disrupts triad protein organization and triad ultrastructure, leading to reduced triad numbers. (A-D′) IF staining was performed on 2 dpf (A,B,C,D) and 5 dpf (A′,B′,C′,D′) isolated myofibers. Confocal images show disrupted transverse pattern of RyR1 (A,A′), DHPR (B,B′) and SERCA1a (D,D′) in speg-DKO starting from 2 dpf, while α-Actinin (D,D′) is not affected. Scale bars: 50 µm. (E-F′) Electron micrographs of 7 dpf WT and speg-DKO muscles. (E) In WT zebrafish skeletal muscle, normal triads are physically above the sarcomeric Z-disks and composed of centrally-located T-tubules flanked by terminal sarcoplasmic reticulum (yellow arrowhead). (E′) Triads in speg-DKO appear structurally disrupted, losing the obvious terminal cisternae of the sarcoplasmic membrane (tSR)/T-tubule/tSR pattern (red arrowhead). (F,F′) More importantly, the majority of sarcomeric Z-disks in speg-DKO do not have adjacent triads (yellow arrows). Scale bars: 0.5 µm (E,E′); 1 µm (F,F′). (G) The total number of triads per 60 µm2 (under an electron microscope) was significantly reduced in speg-DKO. Each dot represents the average of technical triplicates, and three biological replicates are included. Data are mean±s.e.m. Unpaired two-tailed Student's t-test: *P<0.05.

Figure Data
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ Dis. Model. Mech.