Gene
rpf1
- ID
- ZDB-GENE-040625-177
- Name
- ribosome production factor 1 homolog
- Symbol
- rpf1 Nomenclature History
- Previous Names
-
- bxdc5
- zgc:86604
- Type
- protein_coding_gene
- Location
- Chr: 11 Mapping Details/Browsers
- Description
- Predicted to enable RNA binding activity. Predicted to be involved in maturation of 5.8S rRNA and maturation of LSU-rRNA. Predicted to act upstream of or within rRNA processing. Predicted to be located in nucleus. Predicted to be part of preribosome, large subunit precursor. Predicted to be active in nucleolus. Orthologous to human RPF1 (ribosome production factor 1 homolog).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 1 figure from Madakashira et al., 2021
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la027235Tg | Transgenic insertion | Unknown | Unknown | DNA |
1 - 1 of 1
Show
No data available
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Length | Brix domain | U3 snoRNP protein/Ribosome production factor 1 |
---|---|---|---|
UniProtKB:Q6IQU6
|
330 | ||
UniProtKB:A0A2R8QNF3
|
355 | ||
UniProtKB:A0A0R4IWG2
|
249 |
1 - 3 of 3
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-205K8 | ZFIN Curated Data | |
Contained in | BAC | DKEY-228N9 | ZFIN Curated Data | |
Encodes | cDNA | MGC:86604 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001002160 (1) | 1524 nt | ||
Genomic | GenBank:CU207258 (1) | 217918 nt | ||
Polypeptide | UniProtKB:A0A2R8QNF3 (1) | 355 aa |
- Maffioli, E., Angiulli, E., Nonnis, S., Grassi Scalvini, F., Negri, A., Tedeschi, G., Arisi, I., Frabetti, F., D'Aniello, S., Alleva, E., Cioni, C., Toni, M. (2022) Brain Proteome and Behavioural Analysis in Wild Type, BDNF+/- and BDNF-/- Adult Zebrafish (Danio rerio) Exposed to Two Different Temperatures. International Journal of Molecular Sciences. 23(10)
- Madakashira, B.P., Zhang, C., Macchi, F., Magnani, E., Sadler, K.C. (2021) Nuclear Organization during Hepatogenesis in Zebrafish Requires Uhrf1. Genes. 12(7):
- Murphy, P.J., Wu, S.F., James, C.R., Wike, C.L., Cairns, B.R. (2018) Placeholder Nucleosomes Underlie Germline-to-Embryo DNA Methylation Reprogramming. Cell. 172(5):993-1006.e13
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Morley, R.H., Lachani, K., Keefe, D., Gilchrist, M.J., Flicek, P., Smith, J.C., and Wardle, F.C. (2009) A gene regulatory network directed by zebrafish No tail accounts for its roles in mesoderm formation. Proceedings of the National Academy of Sciences of the United States of America. 106(10):3829-3834
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 7 of 7
Show