Gene
mmp14a
- ID
- ZDB-GENE-030901-1
- Name
- matrix metallopeptidase 14a (membrane-inserted)
- Symbol
- mmp14a Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 7 Mapping Details/Browsers
- Description
- Predicted to enable metalloendopeptidase activity and zinc ion binding activity. Acts upstream of with a positive effect on lamellipodium organization; regulation of cell migration; and regulation of extracellular matrix assembly. Acts upstream of or within several processes, including gastrulation; retinal ganglion cell axon guidance; and skeletal system development. Predicted to be located in extracellular matrix and membrane. Is expressed in several structures, including axis; head; head mesenchyme; mesoderm; and musculature system. Human ortholog(s) of this gene implicated in Winchester syndrome; esophagus adenocarcinoma; and myocardial infarction. Orthologous to human MMP14 (matrix metallopeptidase 14).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 18 figures from 11 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- cb386 (12 images)
Wild Type Expression Summary
- All Phenotype Data
- 10 figures from 3 publications
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la025892Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa13113 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa20922 | Allele with one point mutation | Unknown | Splice Site | ENU | |
zf2194 | Allele with one deletion | Exon 4 | Frameshift, Premature Stop | CRISPR |
1 - 4 of 4
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
Winchester syndrome | Alliance | Winchester syndrome | 277950 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Length | Hemopexin, conserved site | Hemopexin-like domain | Hemopexin-like domain superfamily | Hemopexin-like repeats | Metallopeptidase, catalytic domain superfamily | Peptidase M10A | Peptidase M10A, catalytic domain | Peptidase M10A, cysteine switch, zinc binding site | Peptidase M10A, matrix metallopeptidase, C-terminal | Peptidase M10, metallopeptidase | Peptidase, metallopeptidase | Peptidoglycan binding-like | PGBD-like superfamily |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:Q7T2J2
|
574 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
mmp14a-201
(1)
|
Ensembl | 3,509 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-145J6 | ZFIN Curated Data | |
Encodes | EST | cb386 | (2) | |
Encodes | EST | fb72b09 | ZFIN Curated Data | |
Encodes | cDNA | MGC:158195 | ZFIN Curated Data |
1 - 4 of 4
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_194416 (1) | 3517 nt | ||
Genomic | GenBank:CR936517 (1) | 60910 nt | ||
Polypeptide | UniProtKB:Q7T2J2 (1) | 574 aa |
- Rolland, L., Harrington, A., Faucherre, A., Abaroa, J.M., Gangatharan, G., Gamba, L., Severac, D., Pratlong, M., Moore-Morris, T., Jopling, C. (2022) The regenerative response of cardiac interstitial cells. Journal of molecular cell biology. 14(10):
- Szenker-Ravi, E., Ott, T., Khatoo, M., de Bellaing, A.M., Goh, W.X., Chong, Y.L., Beckers, A., Kannesan, D., Louvel, G., Anujan, P., Ravi, V., Bonnard, C., Moutton, S., Schoen, P., Fradin, M., Colin, E., Megarbane, A., Daou, L., Chehab, G., Di Filippo, S., Rooryck, C., Deleuze, J.F., Boland, A., Arribard, N., Eker, R., Tohari, S., Ng, A.Y., Rio, M., Lim, C.T., Eisenhaber, B., Eisenhaber, F., Venkatesh, B., Amiel, J., Crollius, H.R., Gordon, C.T., Gossler, A., Roy, S., Attie-Bitach, T., Blum, M., Bouvagnet, P., Reversade, B. (2021) Discovery of a genetic module essential for assigning left-right asymmetry in humans and ancestral vertebrates. Nature Genetics. 54(1):62-72
- Covello, G., Rossello, F.J., Filosi, M., Gajardo, F., Duchemin, A.L., Tremonti, B.F., Eichenlaub, M., Polo, J.M., Powell, D., Ngai, J., Allende, M.L., Domenici, E., Ramialison, M., Poggi, L. (2020) Transcriptome analysis of the zebrafish atoh7-/- Mutant, lakritz, highlights Atoh7-dependent genetic networks with potential implications for human eye diseases. FASEB bioAdvances. 2:434-448
- Weaver, M.L., Piedade, W.P., Meshram, N.N., Famulski, J.K. (2020) Hyaloid vasculature and mmp2 activity play a role during optic fissure fusion in zebrafish. Scientific Reports. 10:10136
- Wierson, W.A., Welker, J.M., Almeida, M.P., Mann, C.M., Webster, D.A., Torrie, M.E., Weiss, T.J., Kambakam, S., Vollbrecht, M.K., Lan, M., McKeighan, K.C., Levey, J., Ming, Z., Wehmeier, A., Mikelson, C.S., Haltom, J.A., Kwan, K.M., Chien, C.B., Balciunas, D., Ekker, S.C., Clark, K.J., Webber, B.R., Moriarity, B.S., Solin, S.L., Carlson, D.F., Dobbs, D.L., McGrail, M., Essner, J. (2020) Efficient targeted integration directed by short homology in zebrafish and mammalian cells. eLIFE. 9:
- Giffen, K.P., Liu, H., Kramer, K.L., He, D.Z. (2019) Expression of Protein-Coding Gene Orthologs in Zebrafish and Mouse Inner Ear Non-sensory Supporting Cells. Frontiers in neuroscience. 13:1117
- Lu, J.K., Tsai, T.C., Lee, H., Hsia, K., Lin, C.H., Lu, J.H. (2019) Pectoral Fin Anomalies in tbx5a Knockdown Zebrafish Embryos Related to the Cascade Effect of N-Cadherin and Extracellular Matrix Formation. Journal of developmental biology. 7(3)
- Nichols, E.L., Smith, C.J. (2019) Synaptic-like Vesicles Facilitate Pioneer Axon Invasion. Current biology : CB. 29(16):2652-2664.e4
- de Vos, I.J.H.M., Tao, E.Y., Ong, S.L.M., Goggi, J.L., Scerri, T., Wilson, G.R., Low, C.G.M., Wong, A.S.W., Grussu, D., Stegmann, A.P.A., van Geel, M., Janssen, R., Amor, D.J., Bahlo, M., Dunn, N.R., Carney, T.J., Lockhart, P.J., Coull, B.J., van Steensel, M.A.M. (2018) Functional analysis of a hypomorphic allele shows that MMP14 catalytic activity is the prime determinant of the Winchester syndrome phenotype. Human molecular genetics. 27(16):2775-2788
- Hu, B., Gao, Y., Davies, L., Woo, S., Topczewski, J., Jessen, J.R., Lin, F. (2018) Glypican 4 and Mmp14 interact in regulating the migration of anterior endodermal cells by limiting extracellular matrix deposition. Development (Cambridge, England). 145(17):
1 - 10 of 45
Show