FIGURE

Fig. 1

ID
ZDB-FIG-210413-48
Publication
Luo et al., 2020 - Stepwise crosstalk between aberrant Nf1, Tp53 and Rb signalling pathways induces gliomagenesis in zebrafish
Other Figures
All Figure Page
Back to All Figure Page
Fig. 1

CRISPR/Cas9-based deletion system in zebrafish. (A) Schematic illustration of the constructs of the CRISPR/Cas9-based vector, including the gfap promoter-driving Cas9, mCherry reporter, and U6-driving specific gRNA. (B) Strategy of the generation of the transgenic zebrafish lines. (C) F1 transgenic fish generated by mosaic mCherry-positive fish outcrossed with wild-type fish. A subset of the transgenic offspring was identified by mCherry-positive astrocytes. Scale bar = 1 mm. (D) The colocalization of mCherry-labelled Cas9 and GFP-labelled endogenous Gfap in 60 hpf offspring from the cross of gfapWT and Tg(gfap:GFP) transgenic fish. Scale bars = 500 μm. (E–J) Co-localization of mCherry fluorescent signals (red) and endogenous Gfap detected by anti-Gfap antibody (FITC; green) in the brain and retina (E–G) or spinal cord (H–J) tissue. Scale bars = 200 μm. (K) Representative images of whole-mount in situ hybridization using an anti-sense RNA probe against Cas9 mRNA in 48 hpf embryos injected with Tol2 mRNA and gfap:Cas9-T2A-mCherry,U6:gRNA(null) vector expressing Cas9 under the control of the gfap promoter. Cas9 expression pattern is governed by the tissue-specificity of gfap promoter (yellow arrowheads). Scale bars = 500 μm.

Expression Data

Expression Detail
Antibody Labeling
Phenotype Data

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ Brain