FIGURE

Fig. 3

ID
ZDB-FIG-180706-8
Publication
Siddam et al., 2018 - The RNA-binding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development
Other Figures
All Figure Page
Back to All Figure Page
Fig. 3

Celf1 deficiency in mouse and fish causes fiber cell nuclear degradation defects.

(A, B) Histological analysis of control and Celf1lacZKI/lacZKI mouse lenses at post natal day 4 (P4) stage shows abnormal presence of nuclei in centrally located fiber cells only in Celf1lacZKI/lacZKI mice. (A’, B’) High-magnification of the dotted-line area in A, B. Asterisk denote abnormally retained nuclei. (C, D) In zebrafish, compared to control, celf1KD lens exhibit abnormal presence of nuclei in the central fiber cell region. (C’, D’) High-magnification of the dotted-line area in E, F. Asterisk denote abnormally retained nuclei. (E) RT-qPCR analysis confirms significant Dnase2b down-regulation in Celf1cKO/lacZKI lenses compared to control. (F) RNA immunoprecipitation (RIP) and (G) cross-linked RNA immunoprecipitation (CLIP) shows Dnase2b to be enriched in Celf1-pulldown in wild-type mouse lens. (H) Celf1 over-expression in NIH3T3 cells, which carry Dnase2b 3’UTR downstream of a luciferase reporter, results in significant increase of luciferase mRNA. Abbr.: f.c., fold-change; NS, not significant. Asterisks in E, G, H indicate a p-value < 0.005.

Expression Data

Expression Detail
Antibody Labeling
Phenotype Data
Fish:
Knockdown Reagent:
Observed In:
Stage: Day 4

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ PLoS Genet.