FIGURE

Fig. 5

ID
ZDB-FIG-111025-23
Publication
Madelaine et al., 2011 - Partially redundant proneural function reveals the importance of timing during zebrafish olfactory neurogenesis
Other Figures
All Figure Page
Back to All Figure Page
Fig. 5

Neurog1 and Neurod4 act redundantly during development of zebrafish early-born olfactory neurons. (A-D) Confocal projections of GFP from the Tg(8.4neurog1:GFP) transgene in the olfactory placode of wild-type (A), neurog1 mutant (B), neurod4 morphant (C) and neurog1/neurod4 double loss-of-function (D) embryos at 24 hpf. Abrogation of both Neurod4 and Neurog1 function leads to a severe deficit in the differentiation of early-born olfactory neurons. Placodes are oriented with anterior up. Scale bars: 10 μM. (E) Counts of early-born olfactory neurons per placode at 24 hpf in wild-type, neurog1 mutant, neurod4 morphant, neurog1/neurod4 double loss-of-function embryos and neurog1 mutant embryos in which Neurod4 has been mis-expressed. A minimum of twelve olfactory placode was analysed for each context. Error bars represent s.d. *P<0.05, **P<0.001, ***P<0.0005, determined by t-test.

Expression Data
Gene:
Fish:
Knockdown Reagent:
Anatomical Term:
Stage: Prim-5

Expression Detail
Antibody Labeling
Phenotype Data
Fish:
Knockdown Reagent:
Observed In:
Stage: Prim-5

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ Development