FIGURE

Fig. 2

ID
ZDB-FIG-070810-12
Publication
Chong et al., 2007 - The chemokine, Sdf-1, and its receptor, Cxcr4, are required for formation of muscle in zebrafish
Other Figures
All Figure Page
Back to All Figure Page
Fig. 2

Cxcr4 signaling is required for transcription of myogenic genes in the paraxial mesoderm. Dorsal (A-H) and lateral views (I-K). 13 h embryos hybridized with (A-D) myoD, (E-H) myf5 and (I-K) mylz2 riboprobes. (A,B) mcxcr4a (n = 52/52) and msdf1a morphants (n = 50/61) as controls. Embryos show expression pattern of myoD. (C) cxcr4a (n = 48/50) morphants show myoD transcription is reduced in the paraxial mesoderm, while expression in adaxial cells is unchanged. (D) sdf1a (n = 50/61) morphants show similar reduction of myoD in the paraxial cells but not adaxial cells. Black lines and arrows indicate size of expression domain. In addition, intensity of staining in lateral mesoderm is substantially reduced. (E,F) mcxcr4a (n = 36/36) and msdf1a (n = 49/58) morphants as controls. Embryos show characteristic expression pattern of myf5 in the adaxial cells, somitic mesoderm and presomitic mesoderm. (G) cxcr4a (n = 43/47) morphants have myf5 reduced in both somites and forming somites. (H) sdf1a (n = 56/71) morphants cause similar effects to Cxcr4a knock down. Black brackets indicate a region where pattern and intensity of myf5 staining in the newly formed and forming somites were reduced. (I-K) Control (n = 30). Reduced mylz2 transcription in cxcr4a (n = 30) and sdf1a (n = 30) morphants. Abbreviation: ad – adaxial cells.

Expression Data
Genes:
Fish:
Knockdown Reagents:
Anatomical Terms:
Stage: 5-9 somites

Expression Detail
Antibody Labeling
Phenotype Data
Fish:
Knockdown Reagents:
Observed In:
Stage: 5-9 somites

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ BMC Dev. Biol.