PUBLICATION

Bone quality in zebrafish vertebrae improves after alendronate administration in a glucocorticoid-induced osteoporosis model

Authors
Bohns, F.R., Akhtar, R., Chuang, Y.J., Chen, P.Y.
ID
ZDB-PUB-240401-1
Date
2024
Source
Journal of the Mechanical Behavior of Biomedical Materials   154: 106521106521 (Journal)
Registered Authors
Chuang, Yung-Jen
Keywords
Biomechanics, Bone matrix, Drug effects, Osteoporosis, Zebrafish
MeSH Terms
  • Alendronate
  • Animals
  • Bone Density
  • Bone Density Conservation Agents*/adverse effects
  • Glucocorticoids/adverse effects
  • Lumbar Vertebrae
  • Osteoporosis*
  • Prednisolone/adverse effects
  • Spine
  • Zebrafish
PubMed
38555661 Full text @ J. Mech. Behav. Biomed. Mater.
Abstract
Glucocorticoid-induced osteoporosis (GIOP) changes the microarchitecture of bones and often leads to the reduction of bone-mineral density (BMD) and increased fracture rates. Zebrafish has been used as an alternative model for GIOP, however, the interaction of GIOP, and its treatment, with zebrafish bone morphometrics and mechanical properties, remains a challenge. Thus, this study aimed to evaluate the effects of prednisolone and alendronate on the properties of zebrafish vertebrae. Adult 7-month-old zebrafish were distributed into four groups: control (CTRL), prednisolone-only (PN), alendronate-only (ALN), and the sequential use of both medicines (PN + ALN). Fish skeletons were scanned via micro-tomography (n = 3) to obtain vertebra morphometrics (e.g., BMD). Bone morphology was assessed using scanning electron microscopy (n = 4) and the biomechanical behaviour with nanoindentation technique (n = 3). The BMD decreased in PN (426.08 ± 18.58 mg/cm3) and ALN (398.23 ± 10.20 mg/cm3) groups compared to the CTRL (490.43 ± 41.96 mg/cm3) (p < 0.001); however, administering the medicines in sequence recovered the values to healthy levels (495.43 ± 22.06 mg/cm3) (p > 0.05). The bone layered structures remain preserved in all groups. The vertebrae of the groups that received ALN and PN + ALN, displayed higher modulus of elasticity (27.27 ± 1.59 GPa and 25.68 ± 2.07 GPa, respectively) than the CTRL (22.74 ± 1.60 GP) (p < 0.001). ALN alone increased the hardness of zebrafish vertebrae to the highest value among the treatments (1.32 ± 0.13 GPa) (p < 0.001). Conversely, PN + ALN (1.25 ± 0.11 GPa) showed unaltered hardness from the CTRL (1.18 ± 0.13 GPa), but significantly higher than the PN group (1.08 ± 0.12 GPa) (p < 0.001). ALN administered after GIOP development, rescued osteoporotic condition by recovering the BMD and bone hardness in zebrafish vertebrae.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping