PUBLICATION
Stretching of the retinal pigment epithelium contributes to zebrafish optic cup morphogenesis
- Authors
- Moreno-Mármol, T., Ledesma-Terrón, M., Tabanera, N., Martin-Bermejo, M.J., Cardozo, M.J., Cavodeassi, F., Bovolenta, P.
- ID
- ZDB-PUB-210922-26
- Date
- 2021
- Source
- eLIFE 10: (Journal)
- Registered Authors
- Bovolenta, Paola, Cardozo, Marcos, Cavodeassi, Florencia, Moreno-Mármol, Tania, Tabanera, Noemí
- Keywords
- chicken, developmental biology, neuroscience
- MeSH Terms
-
- Animals
- Animals, Genetically Modified
- Biomechanical Phenomena
- Embryo, Nonmammalian
- Embryonic Development
- Morphogenesis*
- Retina
- Retinal Pigment Epithelium/cytology*
- Zebrafish/embryology*
- Zebrafish/genetics
- PubMed
- 34545806 Full text @ Elife
Citation
Moreno-Mármol, T., Ledesma-Terrón, M., Tabanera, N., Martin-Bermejo, M.J., Cardozo, M.J., Cavodeassi, F., Bovolenta, P. (2021) Stretching of the retinal pigment epithelium contributes to zebrafish optic cup morphogenesis. eLIFE. 10:.
Abstract
The vertebrate eye-primordium consists of a pseudostratified neuroepithelium, the optic vesicle (OV), in which cells acquire neural retina or retinal pigment epithelium (RPE) fates. As these fates arise, the OV assumes a cup-shape, influenced by mechanical forces generated within the neural retina. Whether the RPE passively adapts to retinal changes or actively contributes to OV morphogenesis remains unexplored. We generated a zebrafish Tg(E1-bhlhe40:GFP) line to track RPE morphogenesis and interrogate its participation in OV folding. We show that, in virtual absence of proliferation, RPE cells stretch and flatten, thereby matching the retinal curvature and promoting OV folding. Localized interference with the RPE cytoskeleton disrupts tissue stretching and OV folding. Thus, extreme RPE flattening and accelerated differentiation are efficient solutions adopted by fast-developing species to enable timely optic cup formation. This mechanism differs in amniotes, in which proliferation drives RPE expansion with a much-reduced need of cell flattening.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping