PUBLICATION
Fisetin promotes osteoblast differentiation and osteogenesis through GSK-3β phosphorylation at Ser9 and consequent β-catenin activation, inhibiting osteoporosis
- Authors
- Molagoda, I.M.N., Kang, C.H., Lee, M.H., Choi, Y.H., Lee, C.M., Lee, S., Kim, G.Y.
- ID
- ZDB-PUB-210714-31
- Date
- 2021
- Source
- Biochemical pharmacology 192: 114676 (Journal)
- Registered Authors
- Keywords
- Fisetin, GSK-3β, Osteogenesis, β-Catenin
- MeSH Terms
-
- Animals
- Animals, Genetically Modified
- Cell Differentiation/drug effects*
- Cell Differentiation/physiology
- Cell Line
- Dose-Response Relationship, Drug
- Flavonols/pharmacology*
- Flavonols/therapeutic use
- Glycogen Synthase Kinase 3 beta/metabolism*
- Mice
- Osteogenesis/drug effects*
- Osteogenesis/physiology
- Osteoporosis/metabolism*
- Osteoporosis/prevention & control
- Phosphorylation/drug effects
- Phosphorylation/physiology
- Serine/metabolism
- Zebrafish
- beta Catenin/metabolism*
- PubMed
- 34256044 Full text @ Biochem. Pharmacol.
Citation
Molagoda, I.M.N., Kang, C.H., Lee, M.H., Choi, Y.H., Lee, C.M., Lee, S., Kim, G.Y. (2021) Fisetin promotes osteoblast differentiation and osteogenesis through GSK-3β phosphorylation at Ser9 and consequent β-catenin activation, inhibiting osteoporosis. Biochemical pharmacology. 192:114676.
Abstract
Fisetin is a bioactive flavonol that inhibits osteoclastogenesis and promotes osteoblastogenesis. However, the osteogenic activity of fisetin needs to be comprehensively elucidated. In the present study, we observed that fisetin significantly increased alkaline phosphatase (ALP) activity and bone mineralization in MC3T3-E1 preosteoblasts, accompanied by a significant increase in runt-related transcription factor 2 (RUNX2), ALP, collagen type Ⅰ alpha 1 (Col1α1), osterix (OSX), osteocalcin (OCN), and bone morphogenetic protein 4 (BMP4) expression. Furthermore, fisetin promoted vertebral formation in zebrafish larvae, with the highest fisetin concentration comparable with that observed in β-glycerophosphate treatment. Fisetin also inhibited prednisolone (PDS)-induced anti-osteoblastic genes, including nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), tartrate-resistant acid phosphatase-6 (ACP6), dendritic cell-specific transmembrane protein (DC-STAMP), and cathepsin K (CTSK). Fisetin potently mitigated the PDS-induced inhibition of ALP activity and bone mineralization, as well as vertebral resorption in zebrafish larvae. Moreover, we confirmed that fisetin-induced osteogenic effect was activated through phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser9, consequently releasing β-catenin from the destructive complex to promote its nuclear translocation. β-Catenin inhibition by FH535 and the stabilization of GSK-3β by DOI hydrochloride remarkably inhibited fisetin-induced osteogenic activities, indicating that the GSK-3β/β-catenin signaling pathway plays a vital role in fisetin-induced osteogenesis. Collectively, our findings suggest that fisetin stimulates osteogenic activity and could be used as an effective strategy to prevent bone resorption.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping