PUBLICATION
Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish
- Authors
- Rabinowitz, J.S., Robitaille, A.M., Wang, Y., Ray, C.A., Thummel, R., Gu, H., Djukovic, D., Raftery, D., Berndt, J.D., Moon, R.T.
- ID
- ZDB-PUB-170119-11
- Date
- 2017
- Source
- Proceedings of the National Academy of Sciences of the United States of America 114(5): E717-E726 (Journal)
- Registered Authors
- Berndt, Jason, Moon, Randall T., Rabinowitz, Jeremy, Thummel, Ryan
- Keywords
- caudal fin, growth control, positional memory, regeneration, zebrafish
- Datasets
- GEO:GSE92760
- MeSH Terms
-
- Animal Fins/physiology*
- Animals
- Female
- Male
- Metabolomics
- Proteomics
- Regeneration/physiology
- Transcriptome
- Zebrafish*/genetics
- Zebrafish*/metabolism
- Zebrafish*/physiology
- PubMed
- 28096348 Full text @ Proc. Natl. Acad. Sci. USA
Citation
Rabinowitz, J.S., Robitaille, A.M., Wang, Y., Ray, C.A., Thummel, R., Gu, H., Djukovic, D., Raftery, D., Berndt, J.D., Moon, R.T. (2017) Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish. Proceedings of the National Academy of Sciences of the United States of America. 114(5):E717-E726.
Abstract
Regeneration requires cells to regulate proliferation and patterning according to their spatial position. Positional memory is a property that enables regenerating cells to recall spatial information from the uninjured tissue. Positional memory is hypothesized to rely on gradients of molecules, few of which have been identified. Here, we quantified the global abundance of transcripts, proteins, and metabolites along the proximodistal axis of caudal fins of uninjured and regenerating adult zebrafish. Using this approach, we uncovered complex overlapping expression patterns for hundreds of molecules involved in diverse cellular functions, including development, bioelectric signaling, and amino acid and lipid metabolism. Moreover, 32 genes differentially expressed at the RNA level had concomitant differential expression of the encoded proteins. Thus, the identification of proximodistal differences in levels of RNAs, proteins, and metabolites will facilitate future functional studies of positional memory during appendage regeneration.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping