PUBLICATION
Neuron-specific expression of atp6v0c2 in zebrafish CNS
- Authors
- Chung, A.Y., Kim, M.J., Kim, D., Bang, S., Hwang, S.W., Lim, C.S., Lee, S., Park, H.C., and Huh, T.L.
- ID
- ZDB-PUB-101004-1
- Date
- 2010
- Source
- Developmental Dynamics : an official publication of the American Association of Anatomists 239(9): 2501-2508 (Journal)
- Registered Authors
- Huh, Tae-Lin, Kim, Myoung-Jin, Park, Hae-Chul
- Keywords
- V-ATPase, neuron, Notch signaling, zebrafish
- MeSH Terms
-
- Amino Acid Sequence
- Animals
- Central Nervous System/anatomy & histology
- Central Nervous System/metabolism*
- Humans
- Molecular Sequence Data
- Neurons/cytology
- Neurons/metabolism*
- Protein Isoforms/genetics
- Protein Isoforms/metabolism*
- Protein Subunits/genetics
- Protein Subunits/metabolism*
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Sequence Alignment
- Signal Transduction/physiology
- Vacuolar Proton-Translocating ATPases/genetics
- Vacuolar Proton-Translocating ATPases/metabolism*
- Zebrafish*/anatomy & histology
- Zebrafish*/genetics
- Zebrafish*/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism*
- PubMed
- 20839327 Full text @ Dev. Dyn.
Citation
Chung, A.Y., Kim, M.J., Kim, D., Bang, S., Hwang, S.W., Lim, C.S., Lee, S., Park, H.C., and Huh, T.L. (2010) Neuron-specific expression of atp6v0c2 in zebrafish CNS. Developmental Dynamics : an official publication of the American Association of Anatomists. 239(9):2501-2508.
Abstract
Vacuolar ATPase (V-ATPase) is a multi-subunit enzyme that plays an important role in the acidification of a variety of intracellular compartments. ATP6V0C is subunit c of the V(0) domain that forms the proteolipid pore of the enzyme. In the present study, we investigated the neuron-specific expression of atp6v0c2, a novel isoform of the V-ATPase c-subunit, during the development of the zebrafish CNS. Zebrafish atp6v0c2 was isolated from a genome-wide analysis of the zebrafish mib(ta52b) mutant designed to identify genes differentially regulated by Notch signaling. Whole-mount in situ hybridization revealed that atp6v0c2 is expressed in a subset of CNS neurons beginning several hours after the emergence of post-mitotic neurons. The ATP6V0C2 protein is co-localized with the presynaptic vesicle marker, SV2, suggesting that it is involved in neurotransmitter storage and/or secretion in neurons. In addition, the loss-of-function experiment suggests that ATP6V0C2 is involved in the control of neuronal excitability.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping