PUBLICATION
Structural requirements for PACSIN/Syndapin operation during zebrafish embryonic notochord development
- Authors
- Edeling, M.A., Sanker, S., Shima, T., Umasankar, P.K., Höning, S., Kim, H.Y., Davidson, L.A., Watkins, S.C., Tsang, M., Owen, D.J., and Traub, L.M.
- ID
- ZDB-PUB-091215-55
- Date
- 2009
- Source
- PLoS One 4(12): e8150 (Journal)
- Registered Authors
- Shima, Takaki, Tsang, Michael
- Keywords
- Embryos, Notochords, Zebrafish, Liposomes, Drosophila melanogaster, Dimers (Chemical physics), Cell membranes, Endocytosis
- MeSH Terms
-
- Amino Acid Sequence
- Animals
- Carrier Proteins/chemistry*
- Carrier Proteins/metabolism*
- Cell Movement/drug effects
- Embryo, Nonmammalian/abnormalities
- Embryo, Nonmammalian/pathology
- Embryo, Nonmammalian/ultrastructure
- Embryonic Development*/drug effects
- HeLa Cells
- Humans
- Liposomes/metabolism
- Molecular Sequence Data
- Notochord/abnormalities
- Notochord/drug effects
- Notochord/embryology*
- Notochord/pathology
- Oligonucleotides, Antisense/pharmacology
- Phenotype
- Protein Binding/drug effects
- Protein Structure, Tertiary
- Structure-Activity Relationship
- Zebrafish/embryology*
- Zebrafish Proteins/chemistry*
- Zebrafish Proteins/metabolism*
- PubMed
- 19997509 Full text @ PLoS One
Citation
Edeling, M.A., Sanker, S., Shima, T., Umasankar, P.K., Höning, S., Kim, H.Y., Davidson, L.A., Watkins, S.C., Tsang, M., Owen, D.J., and Traub, L.M. (2009) Structural requirements for PACSIN/Syndapin operation during zebrafish embryonic notochord development. PLoS One. 4(12):e8150.
Abstract
PACSIN/Syndapin proteins are membrane-active scaffolds that participate in endocytosis. The structure of the Drosophila Syndapin N-terminal EFC domain reveals a crescent shaped antiparallel dimer with a high affinity for phosphoinositides and a unique membrane-inserting prong upon the concave surface. Combined structural, biochemical and reverse genetic approaches in zebrafish define an important role for Syndapin orthologue, Pacsin3, in the early formation of the notochord during embryonic development. In pacsin3-morphant embryos, midline convergence of notochord precursors is defective as axial mesodermal cells fail to polarize, migrate and differentiate properly. The pacsin3 morphant phenotype of a stunted body axis and contorted trunk is rescued by ectopic expression of Drosophila Syndapin, and depends critically on both the prong that protrudes from the surface of the bowed Syndapin EFC domain and the ability of the antiparallel dimer to bind tightly to phosphoinositides. Our data confirm linkage between directional migration, endocytosis and cell specification during embryonic morphogenesis and highlight a key role for Pacsin3 in this coupling in the notochord.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping