IMAGE

Fig. S1

ID
ZDB-IMAGE-120907-25
Source
Figures for Salbreux et al., 2012
Image
Figure Caption

Fig. S1

Identification of cell profiles at the apical surface of the adult zebrafish retina. A–C) Retinal flat-mount from a young adult transgenic zebrafish (ucd1) in which the cone transducin alpha promoter drives expression of the EGFP reporter. A, C) All cones are green. B, C) cell boundaries at the level of the OLM are labeled with ZO-1 (white). B) UV cones (magenta stars) can be recognized by their large apical profiles relative to the other cones and rods. Red-green double cone pairs within a vertical column are tightly apposed with flattened interfaces (white arrows in B and also in E and H). D–F) Retinal flat-mount from a young adult transgenic zebrafish (kj2) in which the rod opsin promoter drives expression of the EGFP reporter. D, F) All rods are green. E, F) Cell boundaries at the level of the OLM are labeled with ZO-1 (white). F) The initial rods insert between vertical cone columns at the intersections between red, green, blue and UV cones in adjacent columns. G–I) Retinal flat-mount from an older adult rod transgenic zebrafish (kj2). Rods continue to accumulate between adjacent vertical cone columns. J–L) Flat-mount at the margin of the retina from a young adult transgenic zebrafish (mi2002) in which the promoter from the glial-specific gene, gfap, drives expression of the EGFP reporter in Müller glial cells. The germinal zone is at the right. J, L) Müller glia cells at the apical surface (green); thin lamellar processes completely surround all rod and cone photoreceptors at the OLM, and Müller glia also account for the polygonal profiles in the germinal zone and adjacent region where cones are differentiating (magenta arrows in K and L; also see Fig. 3A).

Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ PLoS Comput. Biol.