Gene
lzts2a
- ID
- ZDB-GENE-090313-276
- Name
- leucine zipper, putative tumor suppressor 2a
- Symbol
- lzts2a Nomenclature History
- Previous Names
-
- lzts2
- si:dkey-250a11.1
- Type
- protein_coding_gene
- Location
- Chr: 13 Mapping Details/Browsers
- Description
- Enables beta-catenin binding activity. Acts upstream of or within several processes, including cell migration involved in gastrulation; convergent extension; and regulation of signal transduction. Predicted to be located in cytoplasm; microtubule cytoskeleton; and midbody. Is expressed in several structures, including digestive system; nervous system; otic vesicle; pectoral fin bud; and tail bud. Orthologous to human LZTS2 (leucine zipper tumor suppressor 2).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 3 figures from 3 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- 2 figures from Li et al., 2011
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la010130Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa35459 | Allele with one point mutation | Unknown | Splice Site, Premature Stop | ENU |
1 - 2 of 2
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Length | Leucine zipper putative tumor suppressor | Leucine zipper putative tumour suppressor 2 |
---|---|---|---|
UniProtKB:B8A6E8
|
741 | ||
UniProtKB:A0A8M3AZ07
|
709 |
1 - 2 of 2
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
lzts2a-201
(1)
|
Ensembl | 2,682 nt | ||
mRNA |
lzts2a-202
(1)
|
Ensembl | 2,486 nt | ||
mRNA |
lzts2a-203
(1)
|
Ensembl | 561 nt |
1 - 3 of 3
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-250A11 | ZFIN Curated Data |
1 - 1 of 1
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001145606 (1) | |||
Genomic | GenBank:AL954847 (1) | 278040 nt | ||
Polypeptide | UniProtKB:B8A6E8 (1) | 741 aa |
- Doretto, L.B., Butzge, A.J., Nakajima, R.T., Martinez, E.R.M., de Souza, B.M., Rodrigues, M.D.S., Rosa, I.F., Ricci, J.M.B., Tovo-Neto, A., Costa, D.F., Malafaia, G., Shao, C., Nóbrega, R.H. (2022) Gdnf Acts as a Germ Cell-Derived Growth Factor and Regulates the Zebrafish Germ Stem Cell Niche in Autocrine- and Paracrine-Dependent Manners. Cells. 11(8):
- Tu, J., Yu, S., Li, J., Ren, M., Zhang, Y., Luo, J., Sun, K., Lv, Y., Han, Y., Huang, Y., Ren, X., Jiang, T., Tang, Z., Williams, M.T.S., Lu, Q., Liu, M. (2022) Dhx38 regulates the maintenance and differentiation of erythro-myeloid progenitors and hematopoietic stem cells by alternative splicing. Development (Cambridge, England). 149(17)
- Zhang, G., Ferg, M., Lübke, L., Takamiya, M., Beil, T., Gourain, V., Diotel, N., Strähle, U., Rastegar, S. (2020) Bone morphogenetic protein signaling regulates Id1-mediated neural stem cell quiescence in the adult zebrafish brain via a phylogenetically conserved enhancer module. Stem cells (Dayton, Ohio). 38(7):875-889
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Diotel, N., Viales, R.R., Armant, O., März, M., Ferg, M., Rastegar, S., Strähle, U. (2015) Comprehensive expression map of transcription regulators in the adult zebrafish telencephalon reveals distinct neurogenic niches. The Journal of comparative neurology. 523(8):1202-21
- Rodriguez Viales, R., Diotel, N., Ferg, M., Armant, O., Eich, J., Alunni, A., März, M., Bally-Cuif, L., Rastegar, S., Strähle, U. (2015) The helix-loop-helix protein Id1 controls stem cell proliferation during regenerative neurogenesis in the adult zebrafish telencephalon. Stem cells (Dayton, Ohio). 33(3):892-903
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Li, Y., Li, Q., Long, Y., and Cui, Z. (2011) Lzts2 Regulates Embryonic Cell Movements and Dorsoventral Patterning through Interaction with and Export of Nuclear β-Catenin in Zebrafish. The Journal of biological chemistry. 286(52):45116-30
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
1 - 9 of 9
Show