Gene
gcgra
- ID
- ZDB-GENE-050516-1
- Name
- glucagon receptor a
- Symbol
- gcgra Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 3 Mapping Details/Browsers
- Description
- Enables glucagon receptor activity and peptide hormone binding activity. Acts upstream of or within regulation of glucose metabolic process. Predicted to be located in membrane. Predicted to be active in plasma membrane. Is expressed in brain; heart; liver; male organism; and muscle. Human ortholog(s) of this gene implicated in Mahvash Disease and type 2 diabetes mellitus. Orthologous to several human genes including GCGR (glucagon receptor).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 5 figures from 3 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- 4 figures from Li et al., 2015
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
Mahvash Disease | Alliance | Mahvash disease | 619290 |
1 - 1 of 1
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Conserved_site | IPR017983 | GPCR, family 2, secretin-like, conserved site |
Domain | IPR001879 | GPCR, family 2, extracellular hormone receptor domain |
Domain | IPR017981 | GPCR, family 2-like, 7TM |
Family | IPR000832 | GPCR, family 2, secretin-like |
Family | IPR001749 | GPCR, family 2, gastric inhibitory polypeptide receptor |
1 - 5 of 7 Show all
Domain Details Per Protein
Protein | Length | GPCR, family 2, extracellular hormone receptor domain | GPCR family 2, extracellular hormone receptor domain superfamily | GPCR, family 2, gastric inhibitory polypeptide receptor | GPCR, family 2-like, 7TM | GPCR, family 2, secretin-like | GPCR, family 2, secretin-like, conserved site | G-protein coupled receptor 2 |
---|---|---|---|---|---|---|---|---|
UniProtKB:A0A8M6YWT8
|
512 | |||||||
UniProtKB:E7FB43
|
520 |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-66I5 | ||
Contained in | BAC | CH211-263I6 | ||
Contained in | BAC | DKEYP-11D6 |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:XM_068218119 (1) | 7927 nt | ||
Genomic | RefSeq:NW_018394538 (1) | 265738 nt | ||
Polypeptide | UniProtKB:E7FB43 (1) | 520 aa |
- Du, Q., Shao, R., Wang, W., Zhang, H., Liao, X., Wang, Z., Yin, Z., Ai, Q., Mai, K., Tang, X., Wan, M. (2024) Vitamin D3 Regulates Energy Homeostasis under Short-Term Fasting Condition in Zebrafish (Danio Rerio). Nutrients. 16(9):
- Kang, Q., Zheng, J., Jia, J., Xu, Y., Bai, X., Chen, X., Zhang, X.K., Wong, F.S., Zhang, C., Li, M. (2022) Disruption of the glucagon receptor increases glucagon expression beyond α-cell hyperplasia in zebrafish. The Journal of biological chemistry. 298(12):102665
- Bai, X., Jia, J., Kang, Q., Fu, Y., Zhou, Y., Zhong, Y., Zhang, C., Li, M. (2021) Integrated Metabolomics and Lipidomics Analysis Reveal Remodeling of Lipid Metabolism and Amino Acid Metabolism in Glucagon Receptor-Deficient Zebrafish. Frontiers in cell and developmental biology. 8:605979
- Kang, Q., Hu, M., Jia, J., Bai, X., Liu, C., Wu, Z., Chen, W., Li, M. (2020) Global Transcriptomic Analysis of Zebrafish Glucagon Receptor Mutant Reveals Its Regulated Metabolic Network. International Journal of Molecular Sciences. 21(3):
- Houbrechts, A.M., Beckers, A., Vancamp, P., Sergeys, J., Gysemans, C., Mathieu, C., Darras, V.M. (2019) Age-dependent changes in glucose homeostasis in male deiodinase type 2 knockout zebrafish. Endocrinology. 160(11):2759-2772
- Zhao, F., Jiang, G., Wei, P., Wang, H., Ru, S. (2018) Bisphenol S exposure impairs glucose homeostasis in male zebrafish (Danio rerio). Ecotoxicology and environmental safety. 147:794-802
- Dean, E.D., Li, M., Prasad, N., Wisniewski, S.N., Von Deylen, A., Spaeth, J., Maddison, L., Botros, A., Sedgeman, L.R., Bozadjieva, N., Ilkayeva, O., Coldren, A., Poffenberger, G., Shostak, A., Semich, M.C., Aamodt, K.I., Phillips, N., Yan, H., Bernal-Mizrachi, E., Corbin, J.D., Vickers, K.C., Levy, S.E., Dai, C., Newgard, C., Gu, W., Stein, R., Chen, W., Powers, A.C. (2017) Interrupted Glucagon Signaling Reveals Hepatic α Cell Axis and Role for L-Glutamine in α Cell Proliferation. Cell Metabolism. 25:1362-1373.e5
- Rabinowitz, J.S., Robitaille, A.M., Wang, Y., Ray, C.A., Thummel, R., Gu, H., Djukovic, D., Raftery, D., Berndt, J.D., Moon, R.T. (2017) Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish. Proceedings of the National Academy of Sciences of the United States of America. 114(5):E717-E726
- Tarifeño-Saldivia, E., Lavergne, A., Bernard, A., Padamata, K., Bergemann, D., Voz, M.L., Manfroid, I., Peers, B. (2017) Transcriptome analysis of pancreatic cells across distant species highlights novel important regulator genes. BMC Biology. 15:21
- Li, M., Dean, E.D., Zhao, L., Nicholson, W.E., Powers, A.C., Chen, W. (2015) Glucagon receptor inactivation leads to α-cell hyperplasia in zebrafish. The Journal of endocrinology. 227:93-103
1 - 10 of 16
Show