Gene
mthfd2
- ID
- ZDB-GENE-040704-20
- Name
- methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase
- Symbol
- mthfd2 Nomenclature History
- Previous Names
-
- wu:fb38b11
- wu:fe12e11
- zgc:91891
- Type
- protein_coding_gene
- Location
- Chr: 5 Mapping Details/Browsers
- Description
- Predicted to enable methenyltetrahydrofolate cyclohydrolase activity; methylenetetrahydrofolate dehydrogenase (NAD+) activity; and methylenetetrahydrofolate dehydrogenase (NADP+) activity. Predicted to be involved in tetrahydrofolate interconversion. Predicted to act upstream of or within one-carbon metabolic process. Predicted to be active in mitochondrion. Is expressed in anterior neural tube and optic cup. Orthologous to human MTHFD2 (methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 2 figures from 2 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
No data available
Human Disease
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Conserved_site | IPR020867 | Tetrahydrofolate dehydrogenase/cyclohydrolase, conserved site |
Domain | IPR020630 | Tetrahydrofolate dehydrogenase/cyclohydrolase, catalytic domain |
Domain | IPR020631 | Tetrahydrofolate dehydrogenase/cyclohydrolase, NAD(P)-binding domain |
Family | IPR000672 | Tetrahydrofolate dehydrogenase/cyclohydrolase |
Homologous_superfamily | IPR036291 | NAD(P)-binding domain superfamily |
1 - 5 of 6 Show all
Domain Details Per Protein
Protein | Length | Aminoacid dehydrogenase-like, N-terminal domain superfamily | NAD(P)-binding domain superfamily | Tetrahydrofolate dehydrogenase/cyclohydrolase | Tetrahydrofolate dehydrogenase/cyclohydrolase, catalytic domain | Tetrahydrofolate dehydrogenase/cyclohydrolase, conserved site | Tetrahydrofolate dehydrogenase/cyclohydrolase, NAD(P)-binding domain |
---|---|---|---|---|---|---|---|
UniProtKB:Q6GMK2
|
338 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
mthfd2-201
(1)
|
Ensembl | 2,386 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-275J6 | ZFIN Curated Data | |
Encodes | EST | fb38b11 | ||
Encodes | EST | fe12e11 | ||
Encodes | cDNA | MGC:91891 | ZFIN Curated Data | |
Encodes | cDNA | MGC:174756 | ZFIN Curated Data |
1 - 5 of 5
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001002181 (1) | 2350 nt | ||
Genomic | GenBank:CR925780 (1) | 166407 nt | ||
Polypeptide | UniProtKB:Q6GMK2 (1) | 338 aa |
- Kasper, D.M., Hintzen, J., Wu, Y., Ghersi, J.J., Mandl, H.K., Salinas, K.E., Armero, W., He, Z., Sheng, Y., Xie, Y., Heindel, D.W., Park, E.J., Sessa, W.C., Mahal, L.K., Lebrilla, C., Hirschi, K.K., Nicoli, S. (2020) The N-glycome regulates the endothelial-to-hematopoietic transition. Science (New York, N.Y.). 370:1186-1191
- Hitzel, J., Lee, E., Zhang, Y., Bibli, S.I., Li, X., Zukunft, S., Pflüger, B., Hu, J., Schürmann, C., Vasconez, A.E., Oo, J.A., Kratzer, A., Kumar, S., Rezende, F., Josipovic, I., Thomas, D., Giral, H., Schreiber, Y., Geisslinger, G., Fork, C., Yang, X., Sigala, F., Romanoski, C.E., Kroll, J., Jo, H., Landmesser, U., Lusis, A.J., Namgaladze, D., Fleming, I., Leisegang, M.S., Zhu, J., Brandes, R.P. (2018) Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells. Nature communications. 9:2292
- Ge, L., Zhang, R.P., Wan, F., Guo, D.Y., Wang, P., Xiang, L.X., and Shao, J.Z. (2014) TET2 Plays an Essential Role in Erythropoiesis by Regulating Lineage-Specific Genes via DNA Oxidative Demethylation in a Zebrafish Model. Molecular and cellular biology. 34(6):989-1002
- Mans, D.A., Vermaat, J.S., Weijts, B.G., van Rooijen, E., van Reeuwijk, J., Boldt, K., Daenen, L.G., van der Groep, P., Rowland, B.D., Jans, J.J., Roepman, R., Voest, E.E., van Diest, P.J., Verhaar, M.C., de Bruin, A., and Giles, R.H. (2013) Regulation of E2F1 by the von Hippel-Lindau tumour suppressor protein predicts survival in renal cell cancer patients. The Journal of pathology. 231(1):117-29
- Lee, M.S., Bonner, J.R., Bernard, D.J., Sanchez, E.L., Sause, E.T., Prentice, R.R., Burgess, S.M., and Brody, L.C. (2012) Disruption of the folate pathway in zebrafish causes developmental defects. BMC Developmental Biology. 12(1):12
- Krens, S.F., Corredor-Adamez, M., He, S., Snaar-Jagalska, B.E., and Spaink, H.P. (2008) ERK1 and ERK2 MAPK are key regulators of distinct gene sets in zebrafish embryogenesis. BMC Genomics. 9:196
- Hu, M.C., Gong, H.Y., Lin, G.H., Hu, S.Y., Chen, M.H., Huang, S.J., Liao, C.F., and Wu, J.L. (2007) XBP-1, a key regulator of unfolded protein response, activates transcription of IGF1 and Akt phosphorylation in zebrafish embryonic cell line. Biochemical and Biophysical Research Communications. 359(3):778-783
- Woods, I.G., Wilson, C., Friedlander, B., Chang, P., Reyes, D.K., Nix, R., Kelly, P.D., Chu, F., Postlethwait, J.H., and Talbot, W.S. (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome research. 15(9):1307-1314
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 9 of 9
Show