Gene
trim63a
- ID
- ZDB-GENE-040625-139
- Name
- tripartite motif containing 63a
- Symbol
- trim63a Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 6 Mapping Details/Browsers
- Description
- Predicted to enable ubiquitin-protein transferase activity. Predicted to be involved in positive regulation of DNA-templated transcription. Predicted to be active in chromatin and nucleoplasm. Is expressed in several structures, including adaxial cell; cardiovascular system; musculature system; somite; and testis. Orthologous to human TRIM63 (tripartite motif containing 63).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 20 figures from 11 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:6908933 (7 images)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa4 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa6 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa7 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa128 | Allele with one point mutation | Unknown | Unknown | ENU | |
sa14274 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa40658 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 6 of 6
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Length | B-box-type zinc finger | COS domain | Tripartite motif-containing | Zinc finger, RING/FYVE/PHD-type | Zinc finger, RING-type | Zinc finger, RING-type, conserved site | Zinc finger, RING-type, eukaryotic |
---|---|---|---|---|---|---|---|---|
UniProtKB:Q6IQH8
|
345 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
trim63a-201
(1)
|
Ensembl | 1,518 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
Construct | Regulatory Region | Coding Sequence | Species | Tg Lines | Citations |
---|---|---|---|---|---|
Tg(eef1a1l1:trim63a-EGFP) |
|
| 1 | Li et al., 2019 | |
Tg(myl7:trim63a-IRES-EGFP) |
| 1 | Shimizu et al., 2017 |
1 - 2 of 2
Show
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-186M12 | ZFIN Curated Data | |
Encodes | EST | fc50c07 | ||
Encodes | EST | IMAGE:6908933 | Thisse et al., 2004 | |
Encodes | cDNA | MGC:86757 | ZFIN Curated Data |
1 - 4 of 4
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001002133 (1) | 1539 nt | ||
Genomic | GenBank:BX649631 (2) | 168355 nt | ||
Polypeptide | UniProtKB:Q6IQH8 (1) | 345 aa |
- Chen, Z.L., Guo, C., Zou, Y.Y., Feng, C., Yang, D.X., Sun, C.C., Wen, W., Jian, Z.J., Zhao, Z., Xiao, Q., Lan-Zheng, ., Peng, X.Y., Zhou, Z.Q., Tang, C.F. (2023) Aerobic exercise enhances mitochondrial homeostasis to counteract D-galactose-induced sarcopenia in zebrafish. Experimental gerontology. 180:112265
- Ikeda, D., Fujita, S., Toda, K., Yaginuma, Y., Kan-No, N., Watabe, S. (2023) Cold-induced muscle atrophy in zebrafish: Insights from swimming activity and gene expression analysis. Biochemistry and biophysics reports. 36:101570101570
- Xi, L., Zhai, G., Liu, Y., Gong, Y., Lu, Q., Zhang, Z., Liu, H., Jin, J., Zhu, X., Yin, Z., Xie, S., Han, D. (2023) Attenuated glucose uptake promotes catabolic metabolism through activated AMPK signaling and impaired insulin signaling in zebrafish. Frontiers in nutrition. 10:11872831187283
- Sugasawa, T., Komine, R., Manevich, L., Tamai, S., Takekoshi, K., Kanki, Y. (2022) Gene Expression Profile Provides Novel Insights of Fasting-Refeeding Response in Zebrafish Skeletal Muscle. Nutrients. 14(11)
- Sun, C.C., Yang, D., Chen, Z.L., Xiao, J.L., Xiao, Q., Li, C.L., Zhou, Z.Q., Peng, X.Y., Tang, C.F. (2022) Exercise intervention mitigates zebrafish age-related sarcopenia via alleviating mitochondrial dysfunction. The FEBS journal. 290(6):1519-1530
- Tamai, S., Fujita, S.I., Komine, R., Kanki, Y., Aoki, K., Watanabe, K., Takekoshi, K., Sugasawa, T. (2022) Acute cold stress induces transient MuRF1 upregulation in the skeletal muscle of zebrafish. Biochemical and Biophysical Research Communications. 608:59-65
- Wen, W., Sun, C., Chen, Z., Yang, D., Zhou, Z., Peng, X., Tang, C. (2022) Alcohol Induces Zebrafish Skeletal Muscle Atrophy through HMGB1/TLR4/NF-κB Signaling. Life (Basel, Switzerland). 12(8)
- Sun, C.C., Zhou, Z.Q., Chen, Z.L., Zhu, R.K., Yang, D., Peng, X.Y., Zheng, L., Tang, C.F. (2021) Identification of Potentially Related Genes and Mechanisms Involved in Skeletal Muscle Atrophy Induced by Excessive Exercise in Zebrafish. Biology. 10(8):
- Fei, F., Sun, S., Li, Q., Pei, Z., Wang, L., Zhang, R., Luo, F., Yu, M., Wang, X. (2020) Combinatorial normalization of liver-derived cytokine pathways alleviates hepatic tumor-associated cachexia in zebrafish. Cancer research. 81(4):873-884
- Kelu, J.J., Pipalia, T.G., Hughes, S.M. (2020) Circadian regulation of muscle growth independent of locomotor activity. Proceedings of the National Academy of Sciences of the United States of America. 117(49):31208-31218
1 - 10 of 26
Show