Gene
bcat1
- ID
- ZDB-GENE-030131-9358
- Name
- branched chain amino-acid transaminase 1, cytosolic
- Symbol
- bcat1 Nomenclature History
- Previous Names
-
- fj66g02
- wu:fj66g02
- zgc:73157
- Type
- protein_coding_gene
- Location
- Chr: 4 Mapping Details/Browsers
- Description
- Predicted to enable branched-chain-amino-acid transaminase activity. Predicted to be involved in leucine biosynthetic process and valine biosynthetic process. Predicted to act upstream of or within amino acid biosynthetic process and branched-chain amino acid biosynthetic process. Predicted to be active in mitochondrion. Is expressed in central nervous system; liver; muscle; and neural tube. Orthologous to human BCAT1 (branched chain amino acid transaminase 1).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 9 figures from 5 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- MGC:73157 (3 images)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
No data available
No data available
Human Disease
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Conserved_site | IPR018300 | Aminotransferase, class IV, conserved site |
Family | IPR001544 | Aminotransferase class IV |
Family | IPR005786 | Branched-chain amino acid aminotransferase II |
Family | IPR033939 | Branched-chain aminotransferase |
Homologous_superfamily | IPR036038 | Aminotransferase-like, PLP-dependent enzymes |
1 - 5 of 7 Show all
Domain Details Per Protein
Protein | Length | Aminotransferase class IV | Aminotransferase, class IV, conserved site | Aminotransferase-like, PLP-dependent enzymes | Branched-chain amino acid aminotransferase II | Branched-chain-amino-acid aminotransferase-like, C-terminal | Branched-chain-amino-acid aminotransferase-like, N-terminal | Branched-chain aminotransferase |
---|---|---|---|---|---|---|---|---|
UniProtKB:Q6PC10
|
385 | |||||||
UniProtKB:A0A8M2BBX5
|
373 | |||||||
UniProtKB:A0A8M3AYQ7
|
375 |
1 - 3 of 3
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-172O10 | ZFIN Curated Data | |
Encodes | EST | fj66g02 | ||
Encodes | cDNA | MGC:73157 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_200064 (1) | 2014 nt | ||
Genomic | GenBank:BX547928 (1) | 228177 nt | ||
Polypeptide | UniProtKB:Q6PC10 (1) | 385 aa |
- Xi, L., Zhai, G., Liu, Y., Gong, Y., Lu, Q., Zhang, Z., Liu, H., Jin, J., Zhu, X., Yin, Z., Xie, S., Han, D. (2023) Attenuated glucose uptake promotes catabolic metabolism through activated AMPK signaling and impaired insulin signaling in zebrafish. Frontiers in nutrition. 10:11872831187283
- Li, L.Y., Lv, H.B., Jiang, Z.Y., Qiao, F., Chen, L.Q., Zhang, M.L., Du, Z.Y. (2020) Peroxisomal proliferator-activated receptor α-b deficiency induces the reprogramming of nutrient metabolism in zebrafish. The Journal of physiology. 598(20):4537-4553
- Jiang, J., Wu, S., Lv, L., Liu, X., Chen, L., Zhao, X., Wang, Q. (2019) Mitochondrial dysfunction, apoptosis and transcriptomic alterations induced by four strobilurins in zebrafish (Danio rerio) early life stages. Environmental pollution (Barking, Essex : 1987). 253:722-730
- Safian, D., Bogerd, J., Schulz, R.W. (2019) Regulation of spermatogonial development by Fsh: the complementary roles of locally produced Igf and Wnt signaling molecules in adult zebrafish testis. General and comparative endocrinology. 284:113244
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Yang, B.Y., Zhai, G., Gong, Y.L., Su, J.Z., Peng, X.Y., Shang, G.H., Han, D., Jin, J.Y., Liu, H.K., Du, Z.Y., Yin, Z., Xie, S.Q. (2017) Different physiological roles of insulin receptors in mediating nutrient metabolism in zebrafish. American journal of physiology. Endocrinology and metabolism. 315(1):E38-E51
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Li, Y., Li, G., Görling, B., Luy, B., Du, J., Yan, J. (2015) Integrative Analysis of Circadian Transcriptome and Metabolic Network Reveals the Role of De Novo Purine Synthesis in Circadian Control of Cell Cycle. PLoS Computational Biology. 11:e1004086
- Mansfeld, J., Urban, N., Priebe, S., Groth, M., Frahm, C., Hartmann, N., Gebauer, J., Ravichandran, M., Dommaschk, A., Schmeisser, S., Kuhlow, D., Monajembashi, S., Bremer-Streck, S., Hemmerich, P., Kiehntopf, M., Zamboni, N., Englert, C., Guthke, R., Kaleta, C., Platzer, M., Sühnel, J., Witte, O.W., Zarse, K., Ristow, M. (2015) Branched-chain amino acid catabolism is a conserved regulator of physiological ageing. Nature communications. 6:10043
- Nakajima, H., Nakajima-Takagi, Y., Tsujita, T., Akiyama, S., Wakasa, T., Mukaigasa, K., Kaneko, H., Tamaru, Y., Yamamoto, M., and Kobayashi, M. (2011) Tissue-restricted expression of nrf2 and its target genes in zebrafish with gene-specific variations in the induction profiles. PLoS One. 6(10):e26884
1 - 10 of 12
Show