Gene
cnbpb
- ID
- ZDB-GENE-030131-7782
- Name
- CCHC-type zinc finger, nucleic acid binding protein b
- Symbol
- cnbpb Nomenclature History
- Previous Names
-
- cnbp (1)
- wu:fj34c03
- Type
- protein_coding_gene
- Location
- Chr: 11 Mapping Details/Browsers
- Description
- Predicted to enable mRNA binding activity; single-stranded RNA binding activity; and translation regulator activity. Involved in positive regulation of innate immune response. Predicted to be active in cytoplasm. Human ortholog(s) of this gene implicated in myotonic dystrophy type 2. Orthologous to several human genes including CNBP (CCHC-type zinc finger nucleic acid binding protein).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- No data available
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa14937 | Allele with one point mutation | Unknown | Splice Site | ENU |
1 - 1 of 1
Show
No data available
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
myotonic dystrophy type 2 | Alliance | Myotonic dystrophy 2 | 602668 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Length | CCHC-type Zinc Finger Nucleic Acid Binding | Zinc finger, CCHC-type | Zinc finger, CCHC-type superfamily | Zinc knuckle CX2CX4HX4C |
---|---|---|---|---|---|
UniProtKB:E7FCQ0
|
161 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-159E12 | ||
Encodes | EST | fj34c03 |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001326405 (1) | 1647 nt | ||
Genomic | GenBank:CR855375 (1) | 178231 nt | ||
Polypeptide | UniProtKB:E7FCQ0 (1) | 161 aa |
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Lee, E., Lee, T.A., Kim, J.H., Park, A., Ra, E.A., Kang, S., Choi, H.J., Choi, J.L., Huh, H.D., Lee, J.E., Lee, S., Park, B. (2017) CNBP acts as a key transcriptional regulator of sustained expression of interleukin-6. Nucleic acids research. 45:3280-3296
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Bohne, A., Darras, A., D'Cotta, H., Baroiller, J.F., Galiana-Arnoux, D., and Volff, J.N. (2010) The vertebrate makorin ubiquitin ligase gene family has been shaped by large-scale duplication and retroposition from an ancestral gonad-specific, maternal-effect gene. BMC Genomics. 11:721
1 - 5 of 5
Show