Gene
cldn11b
- ID
- ZDB-GENE-010328-13
- Name
- claudin 11b
- Symbol
- cldn11b Nomenclature History
- Previous Names
-
- cldn11
- fb97c11
- wu:fb97c11 (1)
- Type
- protein_coding_gene
- Location
- Chr: 24 Mapping Details/Browsers
- Description
- Predicted to enable structural molecule activity. Predicted to be involved in bicellular tight junction assembly and cell adhesion. Predicted to be located in cell junction and membrane. Predicted to be active in bicellular tight junction and plasma membrane. Is expressed in several structures, including digestive system; eye; gonad; heart; and immune system. Human ortholog(s) of this gene implicated in hypomyelinating leukodystrophy. Orthologous to human CLDN11 (claudin 11).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 7 figures from 3 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa44155 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 1 of 1
Show
No data available
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
hypomyelinating leukodystrophy 22 | Alliance | Leukodystrophy, hypomyelinating, 22 | 619328 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Length | Claudin | Claudin, conserved site | PMP-22/EMP/MP20/Claudin |
---|---|---|---|---|
UniProtKB:A4QNU3
|
256 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
cldn11b-201
(1)
|
Ensembl | 2,843 nt | ||
mRNA |
cldn11b-202
(1)
|
Ensembl | 1,916 nt |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-230G15 | ZFIN Curated Data | |
Encodes | EST | fb97c11 | ZFIN Curated Data | |
Encodes | cDNA | MGC:162124 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_131772 (1) | 2472 nt | ||
Genomic | GenBank:CR354583 (1) | 113731 nt | ||
Polypeptide | UniProtKB:A4QNU3 (1) | 256 aa |
- Ni, Y., Zhang, Y., Zheng, L., Rong, N., Yang, Y., Gong, P., Yang, Y., Siwu, X., Zhang, C., Zhu, L., Fu, Z. (2023) Bifidobacterium and Lactobacillus improve inflammatory bowel disease in zebrafish of different ages by regulating the intestinal mucosal barrier and microbiota. Life sciences. 324:121699
- Yang, Y., Du, H., Pan, Y., Gong, P., Yang, Y., Wu, F., Pan, D., Xie, W., Fu, Z., Ni, Y. (2023) Bifidobacterium animalis subsp. lactis LKM512 alleviates inflammatory bowel disease in larval zebrafish by reshaping microbiota. Biological & pharmaceutical bulletin. 46(12):1706-1713
- Solis, C.J., Hamilton, M.K., Caruffo, M., Garcia-Lopez, J.P., Navarrete, P., Guillemin, K., Feijoo, C.G. (2020) Intestinal Inflammation Induced by Soybean Meal Ingestion Increases Intestinal Permeability and Neutrophil Turnover Independently of Microbiota in Zebrafish. Frontiers in immunology. 11:1330
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Shu, Y., Lou, Q., Dai, Z., Dai, X., He, J., Hu, W., Yin, Z. (2016) The basal function of teleost prolactin as a key regulator on ion uptake identified with zebrafish knockout models. Scientific Reports. 6:18597
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- McKee, R., Gerlach, G.F., Jou, J., Cheng, C.N., Wingert, R.A. (2014) Temporal and spatial expression of tight junction genes during zebrafish pronephros development. Gene expression patterns : GEP. 16:104-113
- Baltzegar, D.A., Reading, B.J., Brune, E.S., and Borski, R.J. (2013) Phylogenetic revision of the claudin gene family. Marine genomics. 11:17-26
- Kumai, Y., Bahubeshi, A., Steele, S., and Perry, S.F. (2011) Strategies for maintaining Na+ balance in zebrafish (Danio rerio) during prolonged exposure to acidic water. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology. 160(1):52-62
- Clelland, E.S., and Kelly, S.P. (2010) Tight junction proteins in zebrafish ovarian follicles: stage specific mRNA abundance and response to 17beta-estradiol, human chorionic gonadotropin, and maturation inducing hormone. General and comparative endocrinology. 168(3):388-400
1 - 10 of 13
Show